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Abstract. An analytical theory and numerical computations are developed for the two-dimensional free-surface
flow of an initially circular layer of inviscid fluid surrounding a rigid circular cylinder. The two cylinders are
initially concentric. The fluid packet is released from rest and the flow suddenly starts forced by gravity and by
the simultaneous impulsive motion of the inner body. A small-time expansion of the fully nonlinear free-surface
problem is developed and a closed-form solution is found up to third order for an arbitrary radius of the rigid
cylinder. For the gravitational flow around the body at rest, the solution is extended up to fourth order. Free-
surface profiles and hydrodynamic forces on the cylinder are calculated and discussed against numerical solutions
of the exact unsteady nonlinear problem. Some basic features, such as the formation of an almost uniform layer
surrounding the upstream side of the body, are captured by the theory quite well and only later on in time significant
quantitative differences appear. Similarly, the behaviour of hydrodynamic loads is rather well predicted during
initial stages preceding larger fluctuations observed on a longer time-scale.
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1. Introduction

The gravitational release of a packet of inviscid fluid is a classical problem in hydrodynamics,
[1]. In general, one is concerned with the behaviour of an initially stagnant fluid body after
its constraining walls are suddenly removed, so it flows freely due to gravity. Usually the flow
is assumed to take place along a rigid horizontal bottom. This basic type of problem is called
the dam-breaking problem. The dam-breaking problem is difficult due to the singularity at the
fluid front: this calls for an inner expansion, which does not seem to have been developed.
Probably a better insight of the physics involved in contact problems [2] could be a relevant
guide also for the mathematical analysis. The analytical solution for dam breaking is known
only for the outer expansion to the leading order in a small-time asymptotic series. A recent
numerical-experimental work on dam breaking is presented in [3]. For the related wavemaker
problem, [4], an inner expansion has been developed in [5].

The present problem is a type of gravitational release where there is no free-surface sin-
gularity. This is because the solid cylinder is completely surrounded by the free surface.
In combination with the gravitational release, we also include an impulsive motion of the
rigid boundary. In particular, we select the case of initially circular and concentric domain
boundaries for which we are able to carry out the exact solution to third order in a small-time
expansion of the full nonlinear free-surface-flow problem.

This problem is similar to that with initially flat free surface, which was studied numeri-
cally in [6] and analytically in [7], but the geometry under consideration in the present paper
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is different. In impulsive-flow problems with initially flat free surface, gravitational effects
enter the problem to third order in the surface elevation, [7]. In the present case, gravity
affects the second-order surface deflection and the third order comprises the leading nonlinear
interactions between forced flow and gravity. Gravitational self-interaction appears to fourth
order.

Interaction of solid bodies with free surfaces is of importance in marine engineering ap-
plications, melting processes, and technologies which use drying or painting. The basic moti-
vation for the present study is to provide physical insight by taking the analytical description
of such an interaction as far as possible into the nonlinear regime. This goal can be reached
only if one takes properly into account the geometric nonlinearity, [7], which denotes the
consistent description of the finite displacement of the body away from its initial location.
With geometric nonlinearity, it is possible to develop an analytical solution which reaches
beyond the range where the linearized solution dominates the total solution.

With a fully analytical procedure, one has the limitation of enforcing boundary conditions
at the initial domain boundaries. This is strictly valid only asymptotically as time tends to
zero. Therefore, a numerical comparison with the asymptotic series is desirable. In [6], the
authors checked the small-time expansion from [7]. It was demonstrated that the asymptotic
series is valid even outside the range where linearized theory dominates the full solution. In
the present paper, analytical and numerical methods complement each other. Since the initial
flow is given in closed form, we start with a preliminary validation of the numerical method
by checking both global and local quantities.

By comparing analytical and numerical findings, it appears that the analytical prediction of
the free surface shape agrees well with numerical simulations for body displacements smaller
than half the initial radius of the fluid body. This is true for small or moderate gravity effect,
which means Froude number of order one or larger. In particular, the theory is able to capture
the formation of layer of fluid with almost uniform thickness surrounding the cylinder. Further
on in time, the model is unable to follow the large deformations of the free surface described by
the numerical method. For gravity dominated flows, the asymptotic theory is extended further
on to fourth order by including the leading term representing gravitational self-interaction. On
this ground, the present theory provides also test cases to check numerical methods.

In the small-time expansion, the (second-order) hydrodynamic loads are given by a three-
term series which behave linearly in time. Fort = 0+, the result is exact also in the context
of the fully nonlinear problem. In particular, the impulsive force is given by a simple for-
mula, while it requires special care to be recovered numerically. On a longer time-scale, the
asymptotic solution deviates markedly from the numerical results already at times where the
free-surface contour still follows the three-term asymptotic series relatively well. This is be-
cause there is a two-term delay in the small-time expansion of the force versus the surface. In
fact, the third-order analysis for the surface produces only a first-order term for the force. We
have not accomplished the calculation of the second-order force, which would have implied
a full fourth-order analysis for the surface. It is believed that the two-term delay of the force
expansion is the reason for its weaker convergence compared with the surface shape, for any
given truncation of the small-time expansion.
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Figure 1. Sketch of problem and of nomenclature adopted. Dashed lines show the initial geometry of the flow
domain.

2. Mathematical formulation

We consider a two-dimensional film of inviscid fluid with densityρ surrounding a circular
cylinderB of radiusRB .

At negative times the fluid packet is at rest, wrapped inside a circular lid of (initial) radius
RF , concentric with the body. Thex axis is horizontal, they axis is vertical with origin taken
in the common centers of the two boundaries. The gravitational accelerationg points in the
−y direction.

At time zero the wrapping is removed suddenly, so the fluid packet is released to move
freely under gravity, which is mathematically equivalent to have gravity being turned on at
t = 0+. We also assume that the cylinder is put into impulsive motion at the same instant with
velocity W. We introduce dimensionless equations with units of length, time, velocity, and
pressure given as:RF , RF /W , W , ρW 2 and define a Froude number as:F r = W/√gRF .
The dimensionless radius of the inner (solid) cylinder is consistently defined asε = RB/RF .

The inviscid flow is governed by the Laplace equation:

∇28 = 0, (1)

where8(x, y, t) is the dimensionless velocity potential. The mathematical analysis will be
performed in terms of polar coordinates(r, θ), sketched in Figure 1. In particular, upon defin-
ing i and j the unit vectors inx andy directions, the position vector for a fluid particle is
denoted byr = x i + y j , the shape of the free surfaceF as a function of time byr = R(θ, t),
and the location of the center ofB by R = X(t) i + Y (t) j .

Surface tension is neglected, the pressure along the free surface is taken as zero and
the dimensionless kinematic and dynamic boundary conditions on the free surface can be
formulated in polar coordinates as:

∂R

∂t
+ 1

R2

∂R

∂θ

∂8

∂θ
= ∂8

∂r
r = R(θ, t), (2a)
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∂8

∂t
+ 1

2
|∇8|2+ 1

Fr2
R sin θ = 0 r = R(θ, t). (2b)

Penney and Thornhill presented a small time expansion of these equations for a purely gravita-
tional flow and derived the leading-order solution, [1]. In particular, this represents the singular
outer solution in a matched asymptotic expansion. In the present case, the free surface motion
is also forced by the moving inner cylinder, on which the kinematic condition can be written
as:

(r − R) · (∇8− Ṙ) = 0, |r − R| = ε. (3)

The dot superscript denotes time differentiation. Finally, the dimensionless pressurep is given
by the Bernoulli equation:

p + ∂8
∂t
+ 1

2
|∇8|2 + 1

Fr2
y = 0. (4)

3. The small-time expansion

The solution of the problem for small times will be expressed as a power series in time:

(8,R,X, Y ) = (0,1,0,0)

+H(t)[(80,0,0,0) + (81, R1, X1, Y1)t + (82, R2, X2, Y2)t
2+ . . . ]

(5)

for −∞ < t <∞, where we have here introduced the Heaviside unit step function:

H(t) =
{

0 t ≤ 0

1 t > 0
. (6)

In the following we assume a constant body velocity. Hence,

(Xn, Yn) =

(cosα, sinα) n = 1

(0,0) n > 1
, (7)

whereα denotes the angle between the direction of motion and thex-axis. We do not need to
consider the case of a constant acceleration, because it is equivalent to the case of gravitational
flow. In fact, the fully nonlinear boundary value problem can be readily written in a frame
of reference moving with the body acceleration, saya. An apparent body force−a appears
which amounts in considering a modified gravityg− a. Hence, through a suitable choice of
coordinate axes, the problem is formally equal to the one stated before. The Froude number is
now defined using|g− a|.

To derive the free surface conditions to each order, we introduce the time differentiation
operator for the free surfacer = R(θ, t):

d

dt

∣∣∣∣
f.s.
= ∂

∂t
+ ∂R
∂t

∂

∂r
. (8)

The free-surface flow is governed by the dynamic conditions to each order in time:
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80 = 0 r = 1, (9a)

81 = −1

2
R2

1 −
1

Fr2
sinθ r = 1, (9b)

282 = −2R1
∂81

∂r
− R2

1

∂280

∂r2
− 1

Fr2
R1 sinθ r = 1. (9c)

It is interesting to observe that the Froude number enters to one order lower than in the case
of an initially flat free surface [7, 8]. In the present case the gravitational acceleration acts
immediately on the circular contour, while in the former case its effect is postponed until the
free surface has been deformed. The kinematic free surface conditions are:

R1 = ∂80

∂r
r = 1, (10a)

2R2 = ∂81

∂r
+ R1

∂280

∂r2
r = 1, (10b)

6R3 = 2
∂82

∂r
+ 2R1

∂281

∂r2
+ 2R2

∂280

∂r2
+

+R2
1

∂380

∂r3
− 2R′1

∂81

∂θ
− 2R1R

′
1

∂280

∂r∂θ

r = 1. (10c)

Here we have denoted the tangential derivatived/dθ by the prime(′). We shall see that the
first-order surface deformation (10a) does not preserve mass when the amplitude is taken as
finite. But the second term in the second-order deformation (10b) gives compensation for this
mass deficit. At each new order in the small-time expansion the mass imbalance from lower
order is repaired.

To derive the boundary conditions at the rigid cylinder we need the differential operator
defined by:

d

dt

∣∣∣∣
cyl.
= ∂

∂t
+ Ṙ · ∇. (11)

Applying this operator recursively to Equation (3) produces the equations [7]:

∂80

∂r
= cos(θ − α) r = ε, (12a)

∂81

∂r
= − ∂

∂r

(
∂80

∂x
cosα + ∂80

∂y
sinα

)
r = ε, (12b)

2
∂82

∂r
= −2

∂

∂r

(
∂81

∂x
cosα + ∂81

∂y
sinα

)
−

− ∂
∂r

(
∂280

∂x2
cos2 α + ∂

280

∂x∂y
sin 2α + ∂

280

∂y2
sin2 α

) r = ε. (12c)
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One must be cautious with such a mixture of partial derivatives in Cartesian and polar co-
ordinates, as they are not mutually commutative. The inhomogeneous terms in the two last
equations express the geometric nonlinearity, [7]. This is a consistent way of taking into
account the finite displacement of a body away from its initial position. All inhomogeneous
terms are formally linear in the differential equations at each order of a small-time expan-
sion. Still the second- and third-order derivatives in Equations (12b, 12c) represent nonlinear
terms (quadratic and cubic) in a spatial Taylor expansion. The geometric nonlinearity ex-
tends the validity of a closed-form analytical solution beyond the limit where the linearized
solution dominates the full solution. Without geometric nonlinearity, one would be left with
a linearized description at the inner boundary, with a nonzero normal velocity only in the
leading-order kinematic condition.

Consistently with the time expansion (5), the dimensionless force acting on the rigid
cylinder is expanded as:

F(t) = F−1δ(t)+H(t)(F0+ F1t + F2t
2+ . . . ), (13)

δ(t) being the Dirac delta function. The unit of dimensionless force, measured per unit length
along the cylinder axis, isρRFW

2,

3.1. THE ZEROTH-ORDER POTENTIAL

The zeroth-order potential is governed by a Type II boundary-value problem, as given in the
Appendix A. Therefore, its solution is:

80 = ε2r − r−1

1+ ε2
cos(θ − α), (14)

and the resulting first-order deformation of the free surface reads:

R1 = 2ε2

1+ ε2
cos(θ − α). (15)

Within a strictly linear theory, the circular shape may be considered as intact and a pure
translation of the surface in the direction of motion of the cylinder is allowed. In particular,
the center of the fluid packet is displaced from the origin to the point

(x1, y1)t = 2ε2

1+ ε2
(cosα, sin α)t, (16)

which means that, to first order, the fluid packet follows the same direction of motion as the
cylinder, but covers a somewhat shorter distance:

x1

X1
= y1

Y1
= 2ε2

1+ ε2
. (17)

As an example, the net surface velocity is just one half of the cylinder velocity when the
cylinder size isε = 1/

√
3' 0·57735.

The impulsive force of the fluid packet acting on the cylinder is:

F−1 = −πε21− ε2

1+ ε2

W
W
. (18)
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Figure 2. Free surface contours (solid lines) for the limit caseε = 1 and horizontal motion,α = 0, with unit
velocity from left to right. Snapshots given at timest = 0, 1

3, 2
3, 1. The exact solution is given by the dashed lines

at the same time instants. Left: solution to first order in time. Right: solution up to second order in time; actually
this solution is accurate to third order in time because the termR3 (cf. Equation (46)) is zero forε = 1.

and points always in the direction opposite of the motion. This force represents the dimen-
sionless added momentum of the cylinder in motion. The added mass relative to the displaced
fluid mass of the impulsively moving cylinder in unbounded domain is given by:

|F−1|
πε2

= 1− ε2

1+ ε2
. (19)

This relative added mass decreases monotonously with increasing radius. It is obviously equal
to one in unbounded fluid domain and tends to zero in the thin layer limit.

In the rest of this paper finite amplitude displacements are considered. The area inside the
fluid packet according to first-order theory amounts to:

A = 1

2

∫ 2π

0
R2(θ, t)dθ = π

(
1+ 2ε4

(1+ ε2)2
t2
)
. (20)

So the first-order solution conserves mass at first order but generates a second-order im-
balance. This second-order mass deficit will be compensated by a constant contribution to
R2.

The thin-layer limit,ε → 1, is a useful reference case for studying the convergence of
the small-time expansion because the exact solution is simply the translated circle. In the left-
hand plot of Figure 2, for increasing time, the deformed fluid packet to first order (solid lines)
is compared with the exact solution (dashed lines). A clue for identifying each curve is that
all surface points are correct along thex axis. Fort = 1

3, the first-order free surface already
differs from the exact contour. As time increases, a cusp develops fort = 1, and an unphysical
loop (not shown) appears later on. Therefore, the asymptotic series does not make sense for
t > 1. Also the mass imbalance increases rapidly with time. The fact that the exact solution is
the translated circle is verified in Appendix B where the small-time expansion is carried out
in a coordinate system moving with the solid cylinder.

3.2. THE FIRST-ORDER POTENTIAL

We will now derive the first-order potential and its corresponding second-order deformation
of the free surface. Following [7], the first-order potential will be written by superposition as:

81 = φ1+ ψ1+ ϕ(Fr)
1 , (21)
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where the first two terms are due to the free surface nonlinearity and to geometric nonlinearity
respectively, and the last term with superscript (Fr) is the gravity-dependent term.

The potential due to the free surface nonlinearity obeys the conditions:

φ1 = −1

2
R2

1 r = 1,
∂φ1

∂r
= 0 r = ε, (22)

and, disregarding an insignificant constant, the solution is:

φ1 = − r2+ ε4r−2

(1+ ε−2)2 (1+ ε4)
cos 2(θ− α). (23)

The potential due to geometric nonlinearity is defined by:

ψ1 = 0 r = 1,
∂ψ1

∂r
= − ∂

∂r

∂80

∂x
r = ε. (24)

In Equation (12b) we have temporarily setα = 0 in order to simplify the analysis. This is
valid providedθ will be eventually replaced by(θ − α). The final general solution is:

ψ1 = r2− r−2

(1+ ε−2)(1+ ε4)
cos 2(θ− α). (25)

The gravity-dependent potential with zero normal derivative at the cylinder is given by:

ϕ
(Fr)
1 (r, θ) = − 1

Fr2
r + ε2r−1

1+ ε2
sinθ, (26)

which gives the following contribution to the second-order deformation:

R
(Fr)
2 = − 1

2Fr2
1− ε2

1+ ε2
sin θ. (27)

Let us first interpret this result in terms of infinitesimal disturbances. Then the circular shape
is intact, and the center of the fluid packet is effectively translated to the point(0, y(Fr)

2 t2) given
by:

y
(Frs)
2 = − 1

2Fr2
1− ε2

1+ ε2
. (28)

The acceleration of the fluid packet relative to the gravitational acceleration is:

2y(Fr)
2 Fr2 = 1− ε2

1+ ε2
. (29)

When the inner cylinder radius tends to zero, the packet is falling freely. When it tends to
one, however, there is no net gravitational motion. The fluid surface starts falling with half the
gravitational acceleration whenε = 1/

√
3. This happens to be the same value as the one for

which the initial packet velocity is one half the forced velocity. We also note the similarity
between Equations (19) and (20): the first-order relative added mass (relative to the displaced
mass) is the same as the leading-order surface acceleration (relative to gravity).

By Equation (10b) the basic contribution to the second-order deformation is the radial
derivative of the three terms (21). But there is an additional term compensating for the mass
deficit (20) in the first-order deformation:
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1

2
R1
∂280

∂r2
= − 2

(1+ ε−2)2
cos2(θ − α) r = 1. (30)

This contains the only angle-independent contribution to the second-order deformation. The
second-order deformation due to the first-order potential is:

1

2

∂81

∂r
= (2− ε2+ ε4)

(1+ ε−2)(1+ ε4)
cos 2(θ− α)− 1

Fr2
1− ε2

1+ ε2
sin θ r = 1. (31)

The total second-order deformation is the sum of Equations (30) and (31):

R2 = − ε4

(1+ ε2)2
+ 2ε2

(1+ ε2)2 (1+ ε4)
cos 2(θ− α)− 1

2Fr2
1− ε2

1+ ε2
sin θ. (32)

The right-hand plot in Figure 2 shows the contour shape to second-order, for the limit case
ε → 1 of vanishing fluid film. Upon comparing with the first-order solution on the left-hand
plot, the second-order curves appear to be much better approximations and differences with
respect to the exact solution are (graphically) evident only fort > 0·5. Figure 2 illustrates
the merits of geometric nonlinearity in the second-order solution. We start with the left-hand
plot of the first-order solution, which is governed solely by a normal velocity (cosθ) pumped
through the fixed contourr = 1. Then the right-hand plot shows how the inadequate first-order
solution is improved by adding the second-order deformation due to geometric nonlinearity
plus the mass compensation term given by Equation (30).

The only nonzero contribution to the zeroth-order force is due to gravity. In the submerged
cylinder problem gravity does not enter the force to zeroth-order, but only to first order in time.
In the present case we find the vertical zeroth-order force on the cylinder from the falling fluid
film to be:

F0 = F(Fr)
0 = − π

Fr2
ε2 (1− ε2)

1+ ε2
j . (33)

In dimensional variables the absolute value of this downward gravitational force is:

F? = G?1− R2
B/R

2
F

1+ R2
B/R

2
F

. (34)

Here we have introduced the Archimedes forceG? = πρga2L, which is the weight of the fluid
displaced by a rigid cylinder of lengthL. The ratioF?/G? is equal to the ratio between the
impulsive added mass and the displaced fluid mass for forced motion (18). We will show that
this is not a coincidence. There are basic relationships between impulsive flows with constant
velocity and constant acceleration. This has been demonstrated in [7, Section 10], where the
relevant transformation equations are developed (although their higher-order transformations
are erroneous). We will now recapitulate the leading-order analysis of [7] for our circular
geometry. If we replace a constant impulsive velocity by a constant impulsive acceleration, we
make the transformation(X1, Y1)→ 2(X2, Y2). This corresponds to defining as velocity scale
W = √a?RF wherea? is the dimensional acceleration of the cylinder. The dimensionless
forced acceleration is thereby unity. The leading-order displacement and force for constant
acceleration are then given by these quantities for constant velocity:

R2 = 1

2
R1 F0 = F−1. (35)
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This shows why the formulas (18) and (33) are the same when the Froude number is unity
by definition. We will finally compare the surface deformation for the cases of impulsive
accelerated cylinder and purely gravitational flow. The latter case is described above by Equa-
tion (32), if we neglect all non-gravitational terms and put Fr= 1. To compare this with
Equation (35), we have to change coordinate system by following the accelerating cylinder.
Let us takeα = π/2 so the motion is upwards. Then the surface deformation due to grav-
ity will be equivalent to the surface deformation (35) due to an accelerated cylinder minus
(sinθ)/2 due to the change of coordinate system. This produces the second-order deformation
due to gravitational flow, according to the transformation (35):

R2 = 1

2
(R1− sinθ) = −1

2

1− ε2

1+ ε2
sin θ. (36)

This is equivalent with the gravitational term in Equation (32), taking the Froude number as
unity. Thereby, we have verified that the impulsively accelerated cylinder is equivalent to a
purely gravitational flow at the leading order ast → 0.

3.3. THE SECOND-ORDER POTENTIAL

We write the second-order potential as the sum:

82 = φ2+ ψ2 (37)

The first term is the potential due to free-surface nonlinearity and is given by the non-homo-
geneous condition (9c) at the free surface:

φ2 = ε4(ε6+ ε2− 4)

(1+ ε2)3(1+ ε4)
cos (θ − α)− ε4(ε6+ ε2+ 4)

(1+ ε2)3(1+ ε4)
cos 3(θ− α)−

− 1

2Fr2
ε2(3ε2− 1)

(1+ ε2)2
(sin α + sin (2θ − α))

r = 1, (38a)

with zero normal derivative at the cylinder contour:

∂φ2

∂r
= 0 r = ε. (38b)

From Equation (A3) in Appendix A, we find that the normal derivative at the surface is:

∂φ2

∂r
= ε4(1− ε2)(ε6+ ε2− 4)

(1+ ε2)4(1+ ε4)
cos (θ − α)−

−3
ε4(1− ε6) (ε6+ ε2+ 4)

(1+ ε6) (1+ ε2)3 (1+ ε4)
cos 3(θ− α)−

− 1

Fr2
ε2 (3ε2− 1) (1− ε2)

(1+ ε2) (1+ ε4)
sin (2θ − α), r = 1.

(39)

This expression divided by three is the free-surface nonlinearity contribution to the third-order
surface deformation. The last term represents the leading nonlinear free-surface interaction
between gravity and the forced motion. We note that this contribution changes sign at a certain
radiusε = 1/

√
3. This has been identified above as the case where the initial surface motion

is half the forced motion.



Free-surface flow of a fluid body with an inner circular cylinder119

The second term in Equation (37),ψ2, is the potential due to geometric nonlinearity: it is
zero at the free surface and obeys a non-homogeneous condition (12c) at the body. We can
find the solution by integrating out the first radial dependence from the boundary condition
[7]:

?

ψ2 = −∂81

∂x
cosα − ∂81

∂y
sin α−

−1

2

(
∂280

∂x2
cos2α + ∂

280

∂x∂y
sin 2α + ∂

280

∂y2
sin2α

)
.

(40)

This tedious differentiation, carried out using MATHEMATICA , gives the formula:

?

ψ2 = −ε
2(1+ ε2− ε4+ ε6)

(1+ ε2)2 (1+ ε4) r3
cos 3(θ− α)− 2ε2r

(1+ ε2)2(1+ ε4)
cos (θ − α)−

− 1

Fr2
sin (2θ − α)
(1+ ε−2) r2

+ 1

Fr2
sin α

(1+ ε2)
.

(41)

This contribution, marked with a star?, is not the full solutionψ2. A correction potentialψ̃2

must be added to account for the homogeneous condition(ψ2 = 0) at the outer boundary. For
this purpose, we first rewrite Equation (41) by deleting the constant term not contributing to
the final solution:

?

ψ2 = −ε2 (1+ ε2− ε4+ ε6)r−3 cos 3(θ− α)+ 2r cos (θ − α)
(1+ ε2)2(1+ ε4)

−

− 1

Fr2
ε2 sin (2θ − α)
(1+ ε2) r2

.

(42)

The correction potential, with zero normal derivative at the inner cylinder and the Dirichlet
condition:

ψ̃2 = ε2 (1+ ε2− ε4+ ε6) cos 3(θ− α)+ 2 cos(θ − α)
(1+ ε2)2(1+ ε4)

+

+ 1

Fr2
ε2 sin (2θ − α)

1+ ε2
r = 1

(43)

at the free surface, is found from the solution of Type I problem in Appendix A. On this
ground, we finally obtain the normal derivative of the second-order potential due to geometric
nonlinearity:

∂ψ2

∂r
= 6ε2(1+ ε2− ε4+ ε6)

(1+ ε2)3 (1+ ε4) (1− ε2+ ε4)
cos 3(θ− α)−

4ε4

(1+ ε2)3(1+ ε4)
cos(θ − α)

+ 4ε2

Fr2(1+ ε2)(1+ ε4)
sin(2θ − α)

r = 1, (44)

by summing∂ψ̃2/∂r, following from Equation (A3), and the normal derivative of the potential
?

ψ2. We add formula (39) to the last equation and find the normal derivative of the total second-
order potential:
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∂82

∂r
= 3ε2 2− ε4+ 5ε8+ ε10+ ε14

(1+ ε2)4(1+ ε4)(1− ε2+ ε4)
cos 3(θ− α)−

−ε4 8− ε2+ ε4− ε6+ ε8

(1+ ε2)4(1+ ε4)
cos (θ − α)+

+ 1

Fr2
ε2 5− 4ε2+ 3ε4

(1+ ε2)(1+ ε4)
sin (2θ − α).

r = 1. (45)

From the boundary condition (10c) we find the third-order deformation of the surface:

R3 = 2
ε2(1− ε2)(1− ε4− ε6)

(1+ ε2)4 (1+ ε4) (1− ε2+ ε4)
cos 3(θ− α)−

−2

3

ε4(1− ε2)(7+ 7ε2+ 5ε4+ 2ε6)

(1+ ε2)4(1+ ε4)
cos (θ − α)+

+ 1

6Fr2
ε2(1− ε2)(9+ 4ε2+ ε4)

(1+ ε2)2(1+ ε4)
sin (2θ − α)+ 1

2Fr2
ε2(1− ε2)

(1+ ε2)2
sin α.

(46)

The third-order deformation vanishes in the limitε → 1. This means that the curves in the
right-hand plot of Figure 2 show the deviation between the exact contour for a fluid film of
vanishing thickness and our third-order small-time expansion.

We note that the gravity-dependent terms express the leading-order nonlinear interaction
between gravity and the forced flow. The purely gravitational self-interaction will enter the
nonlinear problem in the fourth-order deformation.

In order to calculate the first-order force we need the formula:

F = −ε
∫ 2π

0
[(p)r=ε + tR1 · (∇p)r=ε +O(t2)] ir dθ. (47)

The radial unit vector isir . Here the second term in the integrand gives the leading effect
of finite displacement of the cylinder. It arises from a Taylor expansion with respect to the
cylinder position, and contributes to the first-order force. The impulsive force and the zeroth-
order force are not influenced by the second term in this integrand.

Calculating the first-order force from Equation (47) gives zero gravitational contribution.
With no gravitational effect, it follows that the force points in the direction of motion, and the
calculation can be simplified somewhat by puttingα = 0. The calculation, performed using
MATHEMATICA , produces the following formula for the first-order force:

F1 = 4π
ε4(1− 3ε2+ ε4+ ε8)

(1+ ε2)4(1+ ε4)

W
W
, (48)

which will be discussed in the following.

4. Numerical solution of the exact problem

To discuss the time-range of validity of the analytical solution and study the flow further on,
we also adopt a numerical technique to solve the exact problem stated in Section 2. The fluid
motion is described through an initial value problem for the Euler equations
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∇ · u = 0
Du
Dt
= −1

ρ
∇p + g, (49)

with the no-penetration condition

(u−W) · ν = 0 (50)

on the bodyB and, respectively, the kinematic and dynamic boundary conditions

∂P(ξ, t)
∂t

= u
∂uξ (ξ, t)

∂t
= ∂

∂ξ
(
1

2
u2
ξ − gy) (51)

on the free surfaceF . In (51), the free surface is described in the formP[x(ξ, t), y(ξ, t)], ξ
being a Lagrangian parameter, anduξ the covariant component ofu|F along the tangential
vector∂P/∂ξ . The initial conditions are above stated.

The unsteady fully nonlinear problem is numerically solved through a boundary integral
approach coupled with a time marching procedure. The velocity field is expressed by

u(Q) = ∇Q
∫

F

u · νG dSP +∇Q ×
∫

F

u× νG dSP +∇Q
∫

B

σ G dSP , (52)

where the influence of the free surface is given ‘directly’ in terms of the normalu · ν and tan-
gentialu×ν velocity components onF , while the body is represented by a source distribution
σ .G is the two-dimensional free space Green function.

The normal velocity component onB is explicitly known by Equation (50), whileuξ is
assumed to be known at a given instant of time. The still unknown velocity componentu ·
ν|F and the source strengthσ can be evaluated by solving the integral equations following
from (52) whenP ∈ ∂� ≡ F ∪B and taking the normal projection. In principle, an integral
representation for the velocity field in terms of velocity components onF and onB can be
adopted, [9]. In this case the resulting integral equation has an eigensolution related to the
circulation around the body and the resulting algorithm would be less efficient (see [10] for
zero circulation cases, and [9] for lifting bodies). The drawback of the adopted hybrid formula
is that the velocity on the body, if required, has to be evaluated a posteriori using the tangential
projection of (52).

Once the velocity field onF is evaluated, the solution can be prolonged in time by the free
surface evolution equations (51). Eventually, new geometry and boundary data are obtained
and the procedure can be re-initialized. A standard fourth-order Runge–Kutta scheme is used
for time marching.

The contour integrals are discretized by the Euler–Mclaurin summation formula which,
in combination with trigonometric polynomials, allows us to achieve a spectral convergence
to the (assumed)C∞-solution, [11]. The linear algebraic system obtained is solved by an
iteration technique [12]. In this case an operation count of orderN2, the total number of
unknowns, is obtained together with a storage requirements proportional toN2. Without
reducing the accuracy, for largerN , multipoles expansion and fast summation techniques
can be expediently applied to achieve a computational effort of orderN logN and a storage
requirement just of orderN . The algorithm is fully described by [13].

Few comments are useful about the computation of the fluid force and moment:

F =
∫

B

pν dS M =
∫

B

p r × ν dS.
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As pointed out in [14], the Eulerian derivative of the velocity potential,8̇, is a harmonic
function and the vector fielḋu = ∇8̇ satisfies the boundary condition:

u̇ξ = ∂

∂ξ
(−1

2u
2(ξ, t)− gη(ξ, t)) (53)

on the free surfaceF , and:

u̇ν = (ẆO + �̇×OP−�2OP) · ν −�τ · (W− u)−

−Wτ∂τ (u · ν)+Wν∂τ(u · τ )− W · u
R

(54)

on the bodyB. In Equation (54), a rigid body motion of the formWP = WO(t) + �(t) ×
(P− O) is considered, though the angular velocity� is zero in our problem, andR is the
radius of curvature ofB at P. Hence a boundary integral problem, formally equivalent to the
one solved for the velocity, can be solved with a small extra computational effort.

Once this is accomplished,̇uτ = ∂8̇/∂τ on the body contour can be integrated by a
spectral technique to get8̇ and, ultimately, the pressure (4).

We note, in passing, that similar boundary value problems can be written down for succes-
sive time derivatives and that a Taylor expansion technique could be adopted to step forward
the solution in time [14, 15]. A possible advantage would be a smaller computational effort
with respect to a fourth-order Runge–Kutta scheme because the integral equations has to be
discretized once each time step, i.e the operation count is roughly reduced from 4×N2 toN2

per time step. This is not valid anymore for the present accelerated solver which, regardless
the adopted time marching procedure, requires about 4× N log N operations. The Taylor
expansion scheme probably has better stability properties. We eventually adopted the Runge–
Kutta scheme because of its simpler coding, more evident when solid boundaries in arbitrary
motion are also present. Sawtooth instabilities, firstly reported in [16], are removed by the
filtering technique described in [15].

4.1. VALIDATION OF THE NUMERICAL METHOD

All the solutions shown in the following are obtained by systematically refining the relevant
discrete parameters. Usually, the total numberN of points on∂� is doubled and the time step
1t halved until convergence is achieved for the total simulation time considered.

A first analysis of the convergence properties of the boundary integral equation solver is
performed by comparing solutions obtained fort = 0 with analytical results from previous
sections. In particular, the velocity field∇80 gives the exact solution of the boundary value
problem at hand att = 0. A similar problem has been used in [13] to discuss the convergence
properties of the present algorithm and, therefore, it is not reproduced here. We will use,
instead, the forceF0, Equation (33), to check both the properties of the boundary integral
equation solver and the procedure for computing hydrodynamic loads. As an example, the
comparison of numerical solutions for circular cylinders of increasing radiusε against analyt-
ical values is given in Table 1. With a relatively coarse discretization (NF = NB = 64) a good
accuracy is obtained forε < 0·9. Even forε = 0·8 the predicted value ofF0 agrees with the
analytical one up to the first eleven significant digits. By doubling the number of the discrete
points an accuracy up to 14 digits is recovered (result not shown). Further refinements are
probably counter balanced by round-off and truncation errors but no attempt to use quadruple
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Table 1. Numerical prediction ofF0 for ε approaching 1 and Fr= 1. For radii ranging from 0·01 to 0·8
(upper part of the table) the numerical solution is obtained by usingNF = NB = 64. For larger radii (lower
part) the circular cylinder and the free surface are discretized by the same number of points reported in the
left-hand column. The analytical results follow from Equation (33).

ε 0.01 0.05 0.1

Numerical −0·0003140964397884628 −0·007814809655750250 −0·03079382898073159

Analytical −0·0003140964397884645 −0·007814809655750174 −0·03079382898073164

ε 0.2 0.4 0.8

Numerical −0·1159972672094692 −0·3639914246917828 −0·4413554557248014

Analytical −0·1159972672094693 −0·3639914246917829 −0·4413554557238342

ε

NF , NB 0·90 0·95 0·99

64 −0·2671260788423800 −0·1498385229352068 −2·201377591264447

128 −0·2671221598880131 −0·1453097475110785 −0·4209423929073617

256 −0·2671221598825805 −0·1453038205435533 −5·195585379529581E− 02

512 −0·2671221598825806 −0·1453038205318372 −3·105142817997401E− 02

1024 −0·2671221598825757 −0·1453038205318309 −3·094469914902595E− 02

2048 −0·2671221598825771 −0·1453038205318322 −3·094469557077086E− 02

Analytical −0·2671221598825796 −0·1453038205318355 −3·094469557077363E− 02

precision has been made because the achieved degree of accuracy is satisfactory enough for the
present purposes. As expected more critical conditions occur for larger values ofε, reported
in the lower part of Table 1. For fixedNF +NB , the accuracy decreases as the radius increases
and, eventually, the coarsest grid provides a completely wrong result for the smallest thickness
of the fluid layer (ε = 0·99) which is in this case about ten times smaller than the spacing
between the points on the boundary (2πRF /NF ' 0·098). This behaviour is due to the
relatively poor discretization of non-singular contour integrals when field points are close but
not belonging to the considered contour, [17]. Also in this case, a good agreement with the
exact value is rapidly recovered by refining enough the discretization.

On this ground, it is expected that the accuracy of the numerical solution diminishes in
time as the boundaries approach each other. This will be further evidenced by looking at mass
and energy evolution of the system and at the behaviour of the computed forces. In particular,
the conservation of total mass and rate of change of mass,

M =
∫

F ∪B
y dx Mt =

∫
F ∪B

u · ν dx, (55)

are controlled in time and the power exchange due to the body motion,

W =
∫

B

pν · u dS =
∫

B

pW · ν dS, (56)

is compared with the rate of change of the total energy of the fluid,

Et = d

dt

[
1

2
ρ

∫
F ∪B

ϕ u · ν dS + 1

2
ρg

∫
F ∪B

y2 dx

]
. (57)
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Table 2. Main discretization parameters for the results of Figures 3–5.NF : num-
ber of free surface Lagrangian markers,NB : number of points on the body,1t :
time step adopted within a fourth-order Runge–Kutta procedure.

a b c d e f

NF 64 128 256 512 1024 2048

NB 32 64 128 256 256 256

1t 0·01 0·005 0·0025 0·0025 0·0025 0·0025

In the last equation, the velocity potential on the boundary is evaluated by integrating the
tangential velocity component. This can be effectively achieved by spectral techniques with
accuracy consistent with that of the whole numerical procedure. Actually, the potential is
determined but a constant value which is not relevant because the flux across each single
boundary is zero. All contour integrals in formulas above are treated by the trapezoidal rule
which is known to have spectral convergence for smooth periodic integrands.

We discuss the performances of the method by considering a solid cylinder with radius
ε = 0·5 suddenly set in horizontal motion from left to right, with a resulting Froude number
Fr= 1. In the next section this case will be referred to as CaseII .

The evolution in time of the fluid domain is shown in Figure 3, where the free surface
is deformed under the combined action of body and gravity. The simulation ends with the
formation of a thin layer of fluid surrounding the cylinder and an error growth can be expected
when the thickness of the layer becomes comparable with the distance between the points on
the two facing boundaries. This is confirmed by the evolution of mass conservation reported
in Figure 4 for different discretizations, whose relevant parameters are summarized in Table 2.
Due to the stretching of the free surface, it has been found that, for obtaining refined results up
to t = 2, only the numberNF of free surface markers needs to be further increased and, for the
most refined computation ‘f’, the final relative error in mass conservation is about 2× 10−7.

Even before significant changes in total mass appear, the energy balance at first (center plot
in Figure 4), and the force components later on (bottom plot), oscillate when the thickness of
the fluid layer surrounding the body starts to be small relatively to markers density. In particu-
lar, it is interesting to observe that the check on energy balance is more sensitive, because the
oscillations start sooner with respect to mass and forces evolutions. Anyway, the work input
and energy growth rate agrees better and better by refining enough the discretization and, for
the most refined case, the difference betweenEt andW never exceeds 10−5 (cf., center right
plot in Figure 4). The hydrostatic force component is not included in Figure 4 and, also in
this case, a smooth datum can be obtained by increasingNF +NB . A local analysis is finally
performed by plotting in Figure 5 the distance|Pj(θ, t)− Pk(θ, t)| of corresponding markers
at timet obtained by grid j= e (f) and grid k= d (e), from Table 2. It can be seen that the
maximum difference at the end of the simulation between the two most refined grids is at most
O(10−3).
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Figure 3. Evolution of the free surface due to the combined action of the gravity and of the sudden horizontal
motion, Fr= 1, of the circular cylinder,ε = 0·5 (Case II in the next section). The results are obtained by the most
refined discretization of Table 2 and plotted fromt = 0 up to t= 2 with a time intervalδt = 0·2.

5. Results by asymptotic theory and numerical computations

5.1. FREE SURFACE

We now discuss the free surface evolution forced by the motion of the inner cylinder, pos-
sibly combined with the action of the gravity. From Equation (46), we note that the highest
Fourier mode cos 3(θ− α) has vanishing amplitude not only in the limitε → 1 but also
at a smaller radiusε ' 0·8688, while its maximal amplitude occurs forε ' 0·4545. This
shows that the most important short-wavelength deformations of the boundary occur when
the non-dimensional radiusε is about 0·5. For smaller radii, the inner cylinder is too far from
the boundary to be able to promote short-wavelength deformations. For larger radii, the ten-
dency towards locally uniform thin-layer flow will impede the evolution of short-wavelength
deformations.

On this ground, we consider the cylinder radiusε = 0·5 as a privileged test-case for
discussing the limit of validity of our analytical theory and comparing against the numerical
fully nonlinear findings. In Case I, Figure 6, we first consider forced horizontal motion and
zero gravity. Successive snapshots of the free surface by analytical third-order theory,•, and
numerical computations, solid lines, are reported in the left-hand plot. As time passes, the fluid
packet becomes more and more asymmetric in the direction of the motion. A film of fluid,
surrounding the cylinder, gradually appears: its angular extent grows in time while thickness
slowly diminishes as more and more mass is left behind to feed a bulge of fluid. The agreement
between the two solutions is quite good at least up tot = 0·4. Small differences start to appear
for t > 0·6 which, eventually, become unacceptable for larger times. As previously discussed,
mass conservation is only approximately satisfied by the asymptotic solution. In particular,
this is illustrated through the time evolution of the area inside the free surfaceF reported in
Table 3 with that of other cases discussed below.
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Figure 4. Time evolution of mass (top), difference between rate of energy variationEt and power inputW (center)
and force components withoutF−1 (bottom) for the case of Figure 3. The different lines refer to ‘a’ through ‘f’
discretizations (cf. Table 2). The center right plot refers only to grid ‘f’, where the energy imbalance is magnified
by a factor 105.

A more quantitative comparison between the two solutions is reported in the right-hand
plot of Figure 6 through the time evolution of the differences1x,1y between the coordinates
of Lagrangian markers (in the numerical solution) and of analytical points with same angular
positionθ(t). As time approaches unity,1x,1y roughly grow ast3. For a longer time, the
nonlinear solution starts to be a multi-valued function ofθ and this comparison cannot be
performed.



Free-surface flow of a fluid body with an inner circular cylinder127

Figure 5. Distance between the positions of free surface markers att = 2 obtained by grid ‘e’ and ‘d’ and by ‘f’
and ‘e’ as a function of the initial azimuthal coordinateθ .

Figure 6. Case I. Evolution of the fluid packet forced by the horizontal motion with unit velocity of the inner
cylinder,ε = 0·5. Zero-gravity case, Fr= ∞. Left: fully nonlinear (solid lines) and third-order analytical (•) free
surface contours fort = 0, . . . ,1 (0·2). Right: time evolution of the maximum difference1x, 1y between the
small time expansion and the fully nonlinear solution.

Table 3. Time evolution of the area inside the free surfaceF obtained by the
small time expansion.

t 0·0 0·2 0·4 0·6 0·8 1·0
Case I 3·14159 3·14161 3·14209 3·14572 3·16164 3·21255

Case II 3·14159 3·14184 3·14594 3·16667 3·23432 3·41027

Case IV 3·14159 3·14176 3·14325 3·14641 3·14967 3·15420
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Figure 7. Case I. Free surface evolution up tot = 2; time interval between two successive configurationsδt = 0·2.
Only initial and final positions of the cylinder are reported.

Figure 8. Case II. Evolution of the fluid packet forced by the rightward horizontal motion, Fr= 1, of the
cylinder, ε = 0·5. Left: fully nonlinear (solid lines) and third-order analytical (•) free surface contours for
t = 0, . . . ,1 (0·2). Right: time evolution of the maximum difference1x, 1y between the analytical third-order
contours and the numerical results.

The (numerical) evolution up tot = 2 is plotted in Figure 7. As the cylinder advances,
the thickness of the fluid layer surrounding the body shrinks and remains connected to the
bulk of fluid left behind through a feeding portion with decreasing thickness. At this stage,
small fluid thickness and high curvature of the free surface would probably imply a signifi-
cant role of surface tension and viscous effects which are not presently modeled. Therefore,
though convergence tests and checks through quantities (55)–(57) are still quite satisfactory,
the simulation is not prolonged anymore.

In the absence of gravity and because of the symmetry of the initial conditions, the problem
is indifferent to the direction of motion. For finite Froude numbers we need also to investigate
the effect of the direction of motion. The combined effect of rightward motion and gravity,
Case II, has been anticipated in Figure 3 of previous section. Here, the initial evolution is
reported and compared with our theoretical results, Figure 8. The bulge of fluid left behind
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Figure 9. Shape of fluid packet for inner cylinder radius,ε = 0·5, with vertical and oblique motion, Fr= 1.
Surface shape shown with time increments 0·2. From left to right: upward motion (α = π/2, Case III), downward
motion (α = −π/2, Case IV), oblique upward motion (α = π/4, Case V), oblique downward motion (α = −π/4,
Case VI).

Figure 10. Case III. Evolution of the fluid packet forced by vertical upward motion, Fr= 1, of the inner cylinder,
ε = 0·5. Left: the fully nonlinear (solid lines) and third-order analytical (•) free surface contours for increasing
time. Right: time evolution of the maximum difference1x, 1y between the small time expansion and the fully
nonlinear solution.

starts falling down. This tends to increase the mass imbalance of the asymptotic expansion, as
can be seen in Table 3. Accordingly, the difference between numerical and analytical solutions
are somewhat larger than in the gravity-less case. From Figures 3 and 7 one can compare cases
with and without gravity on a longer time scale. With gravity, larger free-surface deformations
are observed, the fluid film is thinner, and the tail of the bulge is narrower and deformed by
undulations.

Figure 9 collects casesIII throughVI with vertical and oblique motions of the cylinder
andε = 0·5, which is our preferred example from an analytical point of view. For upward
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Figure 11. Case IV. Evolution of the fluid packet forced by vertical downward motion, Fr= 1, of the inner
cylinder, ε = 0·5. Left: the fully nonlinear (solid lines) and third-order analytical (•) free surface contours for
increasing time. Right: time evolution of the maximum difference1x, 1y between the small time expansion and
the fully nonlinear solution.

motion a bulge of fluid is quickly left behind, and a fluid layer of almost uniform thickness
will surroundB. As time passes, this layer becomes extremely thin. For an oblique upward
motion we also get a thin layer surrounding the cylinder, with a freely falling drop left behind.
Oblique downward motion gives a less pronounced separation of the falling drop, but still the
drop will experience almost free fall. The vertical downward motion differs significantly from
the previous cases because the free surface tends to preserve for a longer time the circular
shape. Eventually, the bulk of fluid becomes faster than the body and a bulge starts to appear
ahead of the cylinder.

For CaseIII and CaseIV , we report a more detailed comparison between the analytical and
numerical results (cf., Figures 10–11, respectively). In both cases serious deviations of the
analytical solution from the numerical one start to appear fort > 0·5. For upward motion of
the cylinder, CaseIII , the analytical solution predicts too thick fluid film close to the cylinder.
For downward motion, CaseIV , a qualitative error appears in the analytical prediction as time
approaches one: the formation of a dip above the cylinder. No such dip is detectable in the
numerical computations, even for larger times. It is interesting to note that the mass defect
in the asymptotic series is very small in this case (cf., Table 3). This clearly shows that mass
balance gives no guarantee of local convergence of the small time expansion.

In Appendix B we have solved the full third-order problem in a coordinate system fol-
lowing the solid cylinder in its forced motion. Then the geometric nonlinearity disappears,
and the solution procedure is simpler because all flow nonlinearities appear at the free surface
only. However, in this case, the agreement of the free surface shape with the fully nonlinear
numerical solution is relatively poor compared with the much better solution in the system at
rest. We conclude that the concept of geometric nonlinearity is advantageous for following the
nonlinear free surface flow analytically as far as possible before the expansion breaks down.
To give some ideas on why the expansion in the system at rest is better than the one in the
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Figure 12. First-order contributionF1 to force (solid line) as a function of the cylinder radiusε. Symbols• report
the slope ofFx(t) in the limit t → 0 forFr−2 = 0 and cylinder moving from left to right with unit velocity.

moving system, we take a close look at Figure 10: the small-time expansion in the system at
rest is very good up tot = 0·6, quantitatively reasonable att = 0·8, and still of qualitative
value att = 1. In the last case the asymptotic expansion gives a thin layer on top, the shrinking
waist in the middle has an almost correct width, and the bulge below has a reasonable shape.
As a contrast, the analysis of Appendix B gives no meaningful solution at all att = 1. The
correct solution would in fact be a double-valued function forR(θ) in the moving system. The
shrinking waist effect would be impossible to describe. So we have seen that the description in
the system at rest stays reasonable for greater time than the description in the moving system.
Then it is likely to have a better convergence for smaller times as well.

5.2. HYDRODYNAMIC FORCE

In our small time expansion analysis, the hydrodynamic force is expressed in the formF(t) =
F−1δ(t) + H(t)(F0 + F1t + . . . ), and exact expressions forF−1, F0 are given in Section 3.
In particular,F0 has already been used to validate the numerical procedure and a complete
agreement is achieved. This is reasonable because the solution fort = 0 is exact in the fully
nonlinear sense. To evaluate the impulsive force from the fluid packet,F−1, the boundary value
problem foru̇ is solved by assuming a unit body acceleration and evaluating the corresponding
load. The obtained result fully recovers the exact formula. The same force component could
be evaluated using the definitionF−1 =

∫
B 80νdS, solving the velocity field fort = 0 and

integrating the tangential fluid velocity at the body to obtain the potential80.
The first-order forceF1, Equation (48), is defined as positive in the direction of motion. In

particular (cf., Figure 12),F1 > 0 for 0< ε < 0·6266, i.e., favoring the cylinder to move. A
change of sign is then observed so that the first-order force is directed against the velocity of
the cylinder in the range 0·6266< ε < 1. Summing up, the first-order force expresses a ten-
dency that a thin fluid layer maintains its inertial grip on the cylinder, while a thick fluid layer
collects itself as a downstream packet that starts repelling the cylinder. These two tendencies
are exactly balanced forε ' 0·6266 so thatF1 = 0. More obviously, the first-order force is
zero both forε = 0 and ε= 1; the two terms in Equation (47) do not satisfy these conditions
separately, but as a sum. A numerical check is achieved by considering the gravity-less flow
generated by a cylinder moving from left to right. Several cylinder radiiε are considered and
the ‘slope’ of the hydrodynamic force fort → 0 is numerically evaluated by using a very small
time step and a second-order centered derivative. Numerical results,• plotted in Figure 12,
apparently recover the analytical solution, solid line, for all the considered radii.
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Figure 13. Time evolution of horizontal force component for gravity Fr−2 = 0, . . . , 2·0 (0·25); the extreme values
are denote by solid lines, Fr−2 = 1 by dash-dot lines and arrows show increasing gravity. Left:ε = 0·5. Right:
ε = 0·85. Dashed lines report the corresponding analytical slopeF1.

According to the present theory, the force acting on the body should be gravity-independent
asymptotically for small times. It is then interesting to study the effect of finite Froude num-
bers on loads for finite times. To the purpose, we consider the case of horizontal motion for
which F1 gives the only non-zero horizontal component (F−1 disappears fort > 0+ and
F0 is always vertical). In Figure 13, the time evolution of the numericalFx is plotted for
increasing gravity, forε = 0·5 (left-hand plot) andε = 0·85 (right-hand plot). For both radii,
the corresponding analytical prediction is represented by the dashed line. For the smallestε,
this gives a reasonable estimate of the gravity-less solution over the entire interval of time
considered. More generally, for all the considered Fr, the initial behaviour ofFx is predicted
very well by our asymptotic theory at least fort < 0·2, after thatFx(t) departs from the
linear behaviour. For small gravity, the horizontal force component still remain positive (i.e.,
favoring the body motion) while, for Fr−2 large enough, the force becomes negative, reaches
a minimum and, eventually, starts to grow: the greater the gravity, the faster the growth.

For ε = 0·85 and Fr= ∞, Fx(t) significantly deviates from the analytical result and, in
general, for Fr> 1 the analytical prediction overestimates in magnitude the numerical one. As
gravity Fr−2 increases from zero to unity,Fx(t) behaves more and more linearly in time: for
Fr= 1 (dash-dot line) the horizontal component is well predicted by the asymptotic theory up
to t ' 0·4, and after that deviates sharply. For Fr< 1, the behaviour is qualitatively similar to
the caseε = 0·5, i.e., the force sharply grows, becoming positive, after a negative minimum
has been attained.

In spite of the above deviations of our analytical expression for the force from the numer-
ical results, the corresponding analytical description of the surface agrees well up tot ' 0·5.
This is reasonable because the last term actually included in Equation (13) isF1. Therefore
the presented results are two orders less accurate than those given forR. The evaluation of the
next term,F2, requires the solution of the third-order potential,83, and would produce the
fourth-order deformation,R4.
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5.3. LEADING GRAVITATIONAL EFFECTS IN THE THIRD-ORDER POTENTIAL

The gravity-dependent terms in the third-order solution for moving body express the leading-
order nonlinear interaction between gravity and forced flow. The purely gravitational self-
interaction enters the nonlinear problem in the fourth-order deformation. We now derive the
fourth-order free surface for a cylinder at rest: this represents the leading nonlinear self-
interaction in a purely gravitational flow but gives also the dominating contribution in case
of body motion when Fr� 1. This will allow us to derive a non consistent fourth-order
approximation in case of slow body motions.

If there is no forced velocity,W = 0, our time unit vanishes. Therefore, we have to apply
the gravitational time scale(RF /g)

1/2 and the consistently redefined Froude number equals
one. In the derivation below, we maintain Fr because we will apply the fourth-order correction
term also for Fr� 1.

In case of a fixed cylinder, the dynamic and kinematic conditions on the free surfacer = 1
at each order read

80 = 0 R1 = 0 (58a)

81 = − 1

Fr2
sinθ 2R2 = ∂81

∂r
(58b)

82 = 0 R3 = 0 (58c)

683 = − 2

Fr2
R2 sin θ − 1

Fr4
cos 2θ− 8R2

2 4R4 = ∂83

∂r
+ R2

∂281

∂r2
− R′2

∂81

∂θ
(58d)

respectively, while

∂8j

∂r
= 0 r = ε (j = 0,1,2,3) (59)

are the corresponding boundary conditions on the body. The first and third-order elevations are
identically zero and all the potentials8j are solution of a Type I problem in the Appendix A.
Hence the second-order elevation is:

R2 = − 1

2Fr2
1− ε2

1+ ε2
sin θ. (60)

This fixes83 on r = 1 and, by using again Equation (A3), the fourth-order surface deforma-
tion is determined as:

R4 = − 1

16Fr4

(
1− ε2

1+ ε2

)2

− 1

48Fr4
(1− ε2)(3+ 21ε2 + 11ε4+ 5ε6)

(1+ ε2)2(1+ ε4)
cos 2θ. (61)

This takes into account the leading nonlinear self-interaction due to gravity, and also a fourth-
order compensation for the mass defect due to the second-order solution. In [1], the authors
gave only a second-order solution for the gravitational release of a half-cylinder of fluid. We
also note that, according to our analytical theory, the fourth-order displacement is different
from zero in the limitε→ 0. In this limit case, the second-order displacement represents free
fall.

In Figure 14, we show the comparison between the above analysis (dashed lines) and
our numerical computations (solid lines). From left to right, three different cylinder radii are



134 P. A. Tyvand and M. Landrini

Figure 14. Gravity release of fluid packet surrounding a circular cylinder at rest. (ε = 0·2, 0·5, 0·8 from left
to right, respectively). Top plots: the numerical solution of the exact problem, solid lines, is compared with the
fourth-order asymptotic result, dashed lines, for timet = 0, . . . , 1·2 (0·2). Center plots: time evolution of the
the maximum radial difference between the two solutions. Bottom plots: evolution up tot = 2 by numerical
simulation.

considered (ε = 0·2, 0·5 and 0·8, respectively). For the smallest one, the lower half of the fluid
contour falls freely almost like a rigid body, while the upper half is strongly impeded by the
interior solid boundary. Forε = 0·5 or larger, all the fluid contour has a significant impeded
motion due to the presence of the cylinder. The time evolution of the maximum difference1x,
1y (center plots) shows that the error growth now is behaving ast4 and is (slightly) smaller
for the largestε. In all cases, on a longer time scale, the fluid flows into a drop below the body
at the expense of a circular layer of liquid surroundingB which becomes thinner and thinner.
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Figure 15. Comparison of free surface for Fr= 0·125, 0·25, 0·5 in case of rightward horizontal motion of the
cylinder (ε = 0·5). The time is scaled by 1/Fr. In each plot, the three different cases can be distinguished by the
location of the cylinder (larger displacement for larger Froude number).

In the purely gravitational case with the inner cylinder at rest, all forces are vertical and
the zeroth-order force on the cylinder has already been given by Equation (33). It is obvious
that all forces are zero to odd orders in time. Our calculation shows that the second-order
force is also zero. Thus the leading time-dependent force will be of fourth-order in time, but
its expression is very complicated and will be omitted here. It seems likely that this fourth-
order force will be positive. This means that the downward added-mass force will stay almost
constant until it starts dropping very quickly aboutt = 1.

For Fr2 small enough, the fourth-order termR4 represents also the dominating gravitational
self-interaction term in the case of body motion. On this ground, we finally consider in Fig-
ure 15 the case of rightward horizontal motion for Fr= 0·125, 0·25 and 0·5. Three different
free surface configurations are plotted for the same normalized timet/F r. The motion of
the falling drop scales with Froude number, while closer to the body the fluid motion is
dominated by the forced displacement. It is also interesting to observe that the thickness of
the fluid layer is essentially the same in the three cases. We computed the (consistent) third-
order solution and a non consistent solution by adding also the fourth-order correctionR4.
For both of them the evolution in time of the corresponding maximum difference1x with
respect to the numerical solution is reported in Figure 16. It appears that the behaviour of the
not consistent asymptotic solution (solid lines) is slightly better than the consistent third-order
solution. Further, when comparing errors using the stretched timet/Fr we could also see that
1x is smaller for smaller Fr. This is because we have included the fourth-order term which is
dominating for small Froude numbers.
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Figure 16. Time evolution of the maximum difference1x between numerical simulation and asymptotic theory
for the cases of Figure 15. Dashed lines: third-order solution. Solid lines: third-order with inconsistent fourth-order
correction.

6. Summary and conclusions

A solid circular cylinder surrounded by a uniform fluid layer is impulsively put in motion in a
gravity field. The resulting nonlinear free-surface flow is studied analytically by an asymptotic
expansion in time. The analysis is completed by the numerical solution of the exact problem.

The asymptotic analysis is exact to third order ast → 0 and includes the leading-order
interaction between flow forced by the moving body and gravitational flow.

Closed-form formulas, valid for an arbitrary radius of the inner cylinder, are given for
free surface, potential and hydrodynamic force acting on the body. A fourth-order analysis of
gravitational self-interaction is also performed for the case of an inner cylinder at rest.

An accurate numerical boundary-integral-equation method has been adopted to provide
reference solutions to the exact problem. On this ground, the time-scale of validity of our an-
alytical solution is assessed and, on the longer range, some interesting features are evidenced.

Comparisons with the numerical solution show that the three-term asymptotic expansion
for the free surface is quite accurate up tot ' 0·5, assuming small or moderate gravitational
effect (Time equals to 0·5 corresponds to a body displacement of half the initial radius of the
fluid packet).

The considered problem is related to the late stages of cylinder-exit experiments in [18,
Figures 5.1–5.2], also reported in [19, pp 309–312]. In those experiments, just after a rapidly
moving cylinder has risen above the undisturbed water level, an almost uniform fluid layer
surrounding the body is observed. When the cylinder finally loses its connexion with the
bulk fluid below, about two thirds of its periphery is covered by a water film. It is likely that
the gross evolution of the fluid packet will be independent of the main fluid domain below
because the stagnant pressure in the wake past the cylinder cuts off all pressure-transmitted
communication between the surrounding fluid film and the main fluid domain below. The main
features of such flows are recovered analytically in [7] for the submerged cylinder model, and
appears also in the present problem. Apparently, geometric nonlinearity plays an important
role in the formation of this uniform fluid layer, which cannot be understood by linear theory
alone.

More extended comparisons with water exit experiments are hampered by the occurrence
of flow separation. In the experiments mentioned above, the cylinder motion starts far enough
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from the free surface, and separation has enough time to develop. In [20] data are shown for
the evolution of the drag for impulsive motions of a cylinder in infinite fluid at high Reynolds
numbers. Both constant velocity and constant acceleration are given. As long as the cylinder
displacement is smaller than its own radius, the viscous drag is small. This means that sepa-
ration did not have time to develop and we argue that the present inviscid irrotational model
will be reasonably good for a fluid of small viscosity as long as the cylinder displacement is
not greater than its radius.

Finally, it is likely that the velocity field in the fluid packet surrounding the cylinder after
the exit is far from the quiescent one assumed in our work. Therefore, a small-gravity envi-
ronment, where the free surface body interaction starts abruptly, could give better conditions
for experimental testing of the present model.

Hydrodynamic forces have also been analyzed. The leading-order force is the singular
added-mass force. The zeroth-order force is purely gravitational, and it is similar to the im-
pulsive added-mass force. These force components are exact also in the context of a fully
nonlinear analysis att = 0+, and can be used to check numerical methods. In particular, they
are well recovered by the adopted numerical method.

The results for the first-order force show an interesting behaviour: during the first stage
of motion, small cylinders experience a first-order repelling force,i.e., favoring the motion,
while larger cylinders experience an impeding force. This is quantitatively confirmed by the
numerical solutions, though on a longer time scale large deviations from the numerical so-
lution are observed. In particular, the latter is characterized by large force oscillations with
changing sign.

The numerical method is able to follow large deformations of the free surface. Actually, for
very thin fluid layers and sharp deformations of the free surface, viscosity and surface tension
should play a relevant role. Such effects are not presently modeled.
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Appendix A. Two basic boundary-value problems

There are two basic types of boundary-value problems to each order in the small-time expan-
sion.

Type I problem

Let the potential be given at the outer boundary, with zero normal derivative at the inner
boundary,i.e.

φ = cosn(θ − β), r = 1,
∂φ

∂r
= 0, r = ε, (A1)

n being any integer andβ an arbitrary phase angle. The solution of this boundary-value
problem is:
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φ = rn + ε2nr−n

1+ ε2n
cosn(θ − β). (A2)

In the calculation of the surface shape, we need its normal derivative at the outer boundary:

∂φ

∂r
= n1− ε2n

1+ ε2n
cosn(θ − β), r = 1. (A3)

We evaluate the function and its gradient at the inner boundary:

φ = 2εn

1+ ε2n
cosn(θ − β), 1

ε

∂φ

∂θ
= − 2nεn−1

1+ ε2n
sin n(θ − β), r = ε. (A4)

The normal derivative is given in the second of Equations (A1) as zero.

Type II problem

Let the potential be specified by its normal derivative at the inner boundary, while being
zero at the outer boundary. We consider here a Fourier component as the prescribed potential.
We thus have:

ψ = 0, r = 1,
∂ψ

∂r
= cosn(θ − β), r = ε. (A5)

The solution of this boundary-value problem is:

ψ = 1

n

rn − r−n
εn−1+ ε−n−1

cosn(θ − β) (A6)

valid for non-zero integers, while forn = 0 we have the solution:

ψ = ε log r. (A7)

The normal derivative at the outer boundary is given for any integern by the formula:

∂ψ

∂r
= 2

εn−1+ ε−n−1
cosn(θ − β), r = 1. (A8)

One may need to evaluate the function and its gradient at the inner boundary. We have:

ψ = − ε
n

1− ε2n

1+ ε2n
cosn(θ − β), 1

ε

∂ψ

∂θ
= 1− ε2n

1+ ε2n
sin n(θ − β), r = ε. (A9a)

for non-zero integersn, and

ψ = ε log ε,
1

ε

∂ψ

∂θ
= 0, r = ε, (A9b)

for n = 0, respectively.
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Appendix B. Asymptotic theory in a coordinate system following the cylinder motion

The asymptotic theory in the main text is performed in a coordinate system which is at rest
with the fluid before the motion starts. In this appendix, we will develop an alternative small-
time expansion in a coordinate system that follows with the motion of the inner cylinder.
Then the body boundary condition is zero normal velocity at all times. Thus the concept of
geometric nonlinearity disappears, and we want to find out whether this makes the conver-
gence of the small-time expansion better or worse. We preliminary remark that, in the limit
caseε = 1 displayed in Figure 2, the asymptotic solution in the moving system will be the
exact translating circles, because they are at rest in the considered coordinate system. The
boundary conditions at the free surface are exactly the same as in the main text. The only
two basic changes are the zero normal velocity at the inner boundary, and the flow due to the
change of coordinate system, which is included in the zeroth-order potential. The zeroth-order
potential is found by subtracting a uniform flow making the angleπ − α with thex axis:

80 = −r + ε
2/r

1+ ε2
cos(θ − α). (B1)

This gives the first-order deformation:

R1 = −1− ε2

1+ ε2
cos(θ − α). (B2)

Upon disregarding an insignificant constant, the first-order potential is:

81 = − (1− ε
2)2

4(1+ ε2)2

r2 + ε4r−2

1+ ε4
cos 2(θ− α)− r + ε

2r−1

1+ ε2

sin θ

Fr2
(B3)

and produces the second-order surface deformation:

R2 = −1− 4ε2+ 2ε4 + ε8

4(1+ ε2)2(1+ ε4)
cos 2(θ− α)+ (1− ε

2)ε2

2(1+ ε2)2
− 1− ε2

2Fr2(1+ ε2)
sin θ. (B4)

The second-order potential is:

82 = (−1+ ε2)2(−1+ 4ε2+ ε4+ 2ε6)

4(1+ ε2)4(1+ ε4)
(r + ε

2

r
) cos(θ − α)+

+ (−1+ 4ε2− 4ε4+ ε8)

4(1+ ε2)3(1+ ε4)(1+ ε6)
(r3+ ε

6

r3
) cos 3(θ− α)−

− (1− 4ε2+ 3ε4)

4Fr2(1+ ε2)2(1+ ε4)
(r2 + ε

4

r2
) sin(2θ − α).

(B5)

and leads to the third-order deformation:

R3 = −1+ ε2

(1+ ε2)2

(
ε2(−5+ 4ε2+ 2ε4 + 4ε6+ 3ε8)

4(1+ ε2)2(1+ ε4)
cos(θ − α)+

+2− 11ε2+ 5ε4 + 3ε6+ 8ε8− ε10+ ε12+ ε14

12(1+ ε2)2(1+ ε4)(1− ε2+ ε4)
cos 3(θ− α)+

+1− 2ε2

6Fr2
sin α − ε

2(7+ 2ε2+ ε4)

6Fr2(1+ ε4)
sin(2θ − α)

)
.

(B6)

As expected, all deformations are zero in the limitε −→ 1.
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